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Abstract
We solve, by means of a nested coordinate Bethe ansatz, the open-boundaries
scattering theory describing the excitations of a free open string propagating
in AdS5 × S5, carrying large angular momentum J = J56, and ending on a
maximal giant graviton whose angular momentum is in the same plane. We
thus obtain the all-loop Bethe equations describing the spectrum, for J, finite
but large, of the energies of such strings, or equivalently, on the gauge side of
the AdS/CFT correspondence, the anomalous dimensions of certain operators
built using the ε tensor of SU(N). We also give the Bethe equations for
strings ending on a probe D7-brane, corresponding to meson-like operators in
an N = 2 gauge theory with fundamental matter.

PACS numbers: 11.25.Tq, 11.55.Ds, 02.30.lk

1. Introduction

Following progress in recent years, see e.g. [1–5], the spectral problem in the planar limit
of N = 4 super Yang–Mills is nowadays accepted to be integrable. Integrability allows the
scale dimensions of very long single-trace operators to be encoded in a certain system of
Bethe equations [6]. These equations can be derived by solving, by means of a nested Bethe
ansatz, the (1+1)-dimensional scattering theory [7] that describes the excitations about the
BPS operator tr(ZJ ), which serves as the Bethe reference vacuum. Symmetry considerations
fix the S matrix of this theory (at least for the elementary particles, cf [8]) up to an overall
scalar factor, which is now also believed to be known [9–11]. The asymptotic Bethe equations
are a key ingredient in the formulation of the TBA equations [12] which are believed to encode
the spectrum of operators of all lengths.

The spectral problem extends to cases with open boundary conditions. Integrable open
boundary conditions appear in the duality between N = 4 SU(N) SYM and IIB strings on
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AdS5 × S5 when one considers open strings ending on certain maximal giant gravitons [13]
(for earlier work see [14, 15]). These giant gravitons are D3-branes that wrap a maximal
S3 of the S5. Such a D3-brane has charge J = N under the angular momentum generator J
corresponding to the plane defining the S3, and the dual operator is ε

i1,···,iN
j1,···,jN

Z
j1
i1

· · · ZjN

iN
∼ det Z,

where Z is the unique scalar field of the N = 4 action with charge +1 under J. The operator
dual to the brane with a single string ending on it has one of these Zs replaced by a chain (i.e.
a matrix product) of many N = 4 adjoint fields. To set up an asymptotic scattering theory,
one has to pick a Bethe vacuum for this chain, and in contrast to the closed case, there are
inequivalent choices. In [13] it was shown that the scattering theory is integrable for (at least)
two choices, whose vacuum states are

ε
i1,···,iN
j1,···,jN

Z
j1
i1

· · · ZjN−1
iN−1

(YL)
jN

iN
, (1)

and

ε
i1,···,iN
j1,···,jN

Z
j1
i1

· · · ZjN−1
iN−1

(χLZLχR)
jN

iN
, (2)

with N � L � 1 and where, as we recall below, χL, χR are certain boundary degrees
of freedom. The boundary reflection matrices, to all-loop in λ′tHooft, were derived for both
scattering theories in [13]—for subsequent progress, see [16–21]—but only for the former has
the system been solved, in [22, 23].

In the present paper our main goal is to fill this gap in the literature by finding the Bethe
equations for the latter choice of vacuum, known as the Z = 0 case. To this end, in section 2
we recall the details of the bulk and boundary scattering theory and proceed to solve it by
a nested coordinate Bethe ansatz. In this way we identify the entries of the diagonalized
reflection matrix, which allows us to write down the Bethe equations.

In section 3 we go on to find the Bethe equations for a different but closely related set of
boundary conditions. These arise when one adds to the gauge theory a chiral hypermultiplet
of fundamental matter (breaking N = 4 to N = 2) and uses these fundamental fields to form
‘meson-like’ operators q̄ZZ · · · ZZq. This setup is dual to open strings ending on a probe
D7-brane [24, 25] and the all-loop scattering theory for it was proposed in [26].

2. Z = 0 giant graviton

Let D be the dilatation operator, and J ∈ so(6)R the R-symmetry which generates rotations
in (say) the 56 plane. Of the (complexified) superconformal algebra psu(4|4) of the N = 4
theory, the subalgebra commuting with D−J is a copy of psu(2|2) × psu(2|2). The scalar
Z := �5 + i�6 is the unique field in the N = 4 SYM action whose charge under D−J is
zero; on the remaining fields D − J > 0. There are 16 fields with the smallest positive
eigenvalue, D − J = 1: the four scalars �1,�2,�3,�4, the four gauge fields Aμ, and 8 out
of the 16 fermions. These fields3 transform in the bi-fundamental representation ( , ) of
psu(2|2) × psu(2|2) and we denote them by {χ a,ȧ}a,ȧ∈{1,2,3,4}.

Just as one can build a scattering theory with closed boundaries whose vacuum state is
the operator tr ZL, L � 1 [7], so it is also possible to construct a scattering theory with open
boundary conditions.

In this section the vacuum states will be the operators

ε
i1,···,iN
j1,···,jN

Z
j1
i1

· · · ZjN−1
iN−1

(
χ

a,ȧ
L ZJ χ

e,ė
R

)jN

iN
, (3)

where L and R stand for the left and right boundaries. The boundary degrees of freedom also
transform in a bi-fundamental representation ( , ) of psu(2|2) × psu(2|2) [13] and the full

3 More precisely, cf equation (84) below.
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symmetry is preserved by reflections of bulk excitations from the boundary. As usual, we
begin by considering the simpler scattering theory in which the symmetry is only one copy of
psu(2|2) and both bulk and boundary excitations transform in the fundamental.

2.1. The scattering theory

2.1.1. The psu(2|2) � R
3 symmetry algebra. Recall from [7, 27] that the algebra

psu(2|2) � R
3 is spanned by the bosonic generators Ra

b, Lα
β of the two su(2) factors

and C,P,K of the central extension R
3, together with the fermionic generators Qα

a and Sa
α .

We write a, b, . . . ∈ {1, 2} and α, β, . . . ∈ {3, 4} for fundamental indices of, respectively, the
su(2)R and su(2)L factors:[

Ra
b, J

c
] = δc

bJ
a − 1

2δa
bJ

c,
[
Ra

b, Jc

] = −δa
c Jb + 1

2δa
bJc,[

Lα
β, Jγ

] = δ
γ

β Jα − 1
2δα

βJγ ,
[
Lα

β, Jγ

] = −δα
γ Jβ + 1

2δα
βJγ ,

(4)

where J is any generator with the index shown. Then the supersymmetries transform
canonically under su(2)L × su(2)R and close into the bosonic generators according to{

Qα
a ,Q

β

b

} = εαβεabP,
{
Sa

α,Sb
β

} = εαβεabK,{
Sa

α,Q
β

b

} = δa
bL

β
α + δβ

αRa
b + δa

b δ
β
αC.

(5)

2.1.2. Fundamental representations. The boundary degrees of freedom and the elementary
excitations propagating in the bulk all transform in fundamental representations of psu(2|2)�

R
3. The carrier space (2|2) of such representations has a basis |χ a〉 = {|φa〉, |ψα〉} consisting

of an su(2)R doublet of bosons |φa〉 and an su(2)L doublet of fermions |ψα〉. A fundamental
representation is specified by the values of the coefficients a, b, c, d that determine the action
of the supersymmetries on these basis states:

Qα
a |φb〉 = aδb

a |ψα〉, Qα
a |ψβ〉 = bεαβεab|φb〉, (6)

Sa
α|φb〉 = cεαβεab|ψβ〉, Sa

α|ψβ〉 = dδβ
α |φa〉, (7)

which must obey the shortening (or mass-shell) condition ad − bc = 1.
For an elementary magnon propagating in the bulk, with momentum p, these coefficients

are parameterized as [27]

a = √
gη, b = −√

g
iζ

η

(
1 − x+

x−

)
,

c = −√
g

η

ζx+
, d = √

g
x+

iη

(
1 − x−

x+

)
,

(8)

where |η|2 = i(x− − x+), to ensure unitarity, x± are the standard spectral parameters obeying

eip = x+

x− , x+ +
1

x+
− x− − 1

x− = i

g
, (9)

and ζ is pure phase given by the product
∏

k eipk over all magnons to the left of the magnon
in question. The values of the central charges C,P,K are given in terms of p and ζ by

P = ab = gζ(1 − eip), K = cd = g

ζ
(1 − e−ip), (10)

C = 1

2
(ad + bc) = 1

2

√
1 + 16g2 sin

(p

2

)2
, (11)
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and the energy E of the magnon is identified with 2C. We will write (p,ζ,η) to denote this
representation.

The boundary excitations, on the other hand, do not carry momentum. They transform in
the representation given by [13]

aB = √
gηB, bB = −√

g
iζB

ηB

,

cB = −√
g

ηB

xBζB

, dB = √
g

xB

iηB

,

(12)

where |ηB |2 = −ixB , ζB is a boundary phase to be specified below, and the mass-shell
condition ad − bc = 1 now reads

xB +
1

xB

= i

g
. (13)

The values of the central charges C,P,K and the energy E of an unexcited boundary are given
by

P = aBbB = giζB, K = g

iζB

,
1

2
E = C = 1

2

√
1 + 4g2. (14)

We write this representation as (ζB ,ηB).

2.1.3. Bulk and boundary scattering. Asymptotic components of energy eigenstates
transform in tensor products of these representations,

(ζL,ηL) ⊗ (p1,ζ1,η1) ⊗ · · · ⊗ (p
KI ,ζKI ,ηKI ) ⊗ (ζR,ηR), (15)

where K I is the number of bulk magnons. The phases ζL, ζR and ζi associated with all the
particles, bulk and boundary, are conveniently visualized using the Lin–Lunin–Maldacena
(LLM) disc picture [28, 29]. In this picture, the boundary degrees of freedom correspond to
radial line segments, and bulk excitations to line segments between points on the circumference.
For example, an asymptotic component of a state with three bulk magnons might look as
follows [13].

As usual in (1+1)-dimensional scattering theories with boundaries, an asymptotic region
is labelled by the ordering of the bulk particles (specified by a permutation σ ∈ SK I of some
fiducial ordering) and a sign ±1 for each bulk particle which specifies whether it is ingoing
or outgoing from (say) the right boundary. That is, the asymptotic regions correspond to the
Weyl chambers of the BCK I ≡ SK I � Z

K I

2 group of reflections [30–33]. The components
of an energy eigenstate in different asymptotic regions are related by the bulk and boundary
scattering matrices, S and R; to respect the symmetry of the problem, S and R must commute
with the action of psu(2|2)�R

3. The labels of the representations can change under scattering,
but must do so in a way which preserves the values of the three central charges C,P,K. The
correct changes turn out to be [7, 13, 27]

4
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Table 1. Coefficient functions for the bulk scattering matrix of two elementary magnons.

A = S0(p1, p2)
η1η2
η̃1 η̃2

x+
2 −x−

1
x−

2 −x+
1

B = S0(p1, p2)
η1η2
η̃1 η̃2

x+
2 −x−

1
x−

2 −x+
1

(
1 − 2

1−1/x−
2 x+

1
1−1/x+

2 x+
1

x−
2 −x−

1
x+

2 −x−
1

)
C = − 2iη1η2

ζ
S0(p1, p2)

1
x+

1 x+
2

x−
2 −x−

1
x−

2 −x+
1

1
1−1/x+

2 x+
1

D = −S0(p1, p2)

E = −S0(p1, p2)
(

1 − 2
1−1/x+

2 x−
1

1−1/x−
2 x−

1

x+
2 −x+

1
x−

2 −x+
1

)
F = − 2iζ

η̃1 η̃2
S0(p1, p2)

(x+
1 −x−

1 )(x+
2 −x−

2 )

x−
1 x−

2

x+
2 −x+

1
x−

2 −x+
1

1
1−1/x−

2 x−
1

G = S0(p1, p2)
η1
η̃1

x+
2 −x+

1
x−

2 −x+
1

H = S0(p1, p2)
η1
η̃2

x+
2 −x−

2
x−

2 −x+
1

K = S0(p1, p2)
η2
η̃1

x+
1 −x−

1
x−

2 −x+
1

L = S0(p1, p2)
η1
η̃1

x−
2 −x−

1
x−

2 −x+
1
.

S : (p,ζ,η) ⊗ (p′,ζ eip,η′) −→ (p′,ζ,η̃′) ⊗ (p,ζ eip′
,η̃) (16)

RL : (−ζ,ηB) ⊗ (p,ζ,η) −→ (−ζ e2ip,η̃B ) ⊗ (−p,ζ e2ip,η̃) (17)

RR : (p,ζ,η) ⊗ (ζ eip,ηB) −→ (−p,ζ,η̃) ⊗ (ζ e−ip,η̃B ), (18)

which are rather natural when visualized in the LLM disc picture:

The tensor product of two fundamental representations is irreducible for generic values of the
parameters, and therefore (by Schur’s lemma) each of the maps S12, RL and RR is determined
by symmetry up to an overall factor. The most general intertwiner I of su(2) ⊕ su(2)

representations is

I|φaφb〉 = A|φ{aφb}〉 + B|φ[aφb]〉 + 1
2Cεabεαβ |ψαψβ〉

I|ψαψβ〉 = D|ψ {αψβ}〉 + E|ψ [αψβ]〉 + 1
2Fεabε

αβ |φaφb〉
I|φaψβ〉 = G|ψβφa〉 + H |φaψβ〉
I|ψαφb〉 = K|ψαφb〉 + L|φbψα〉,

for some coefficients A,B,C,D,E, F,G,H,K,L, which are then fixed by demanding that
I commute with the supersymmetries. They were computed in [7] for the bulk S matrix and
[13] for the boundary reflection matrix, and are reproduced in tables 1 and 2. Note that we

5



J. Phys. A: Math. Theor. 43 (2010) 145401 D H Correa and C A S Young

Table 2. Coefficient functions for the right reflection of an elementary magnon. Left reflection
ones are obtained by parity symmetry. In the LLM disc, this is visualized by reversing the arrows,
i.e. x± → −x∓ and ζ → −ζ x+

x− .

A = R0(p)
ηBη

η̃B η̃

x−(x−−xB)
x+(x++xB )

,

B = R0(p)
ηBη

η̃B η̃

x−
(
−2(x−)

2
+x+x−+2(x+)

2
)
−xB

(
2(x−)

2
+x+x−−2(x+)

2
)

(x+)2(xB +x+)
,

C = −R0(p)
2iηBη

ζ

(xB +x−−x+)(x−+x+)
x+(xB +x+)

,

D = R0(p),

E = R0(p)
x+

(
2(x−)

2
+x+x−−2(x+)

2
)

+xB

(
−2(x−)

2
+x+x−+2(x+)

2
)

x−x+(xB +x+)
,

F = −R0(p) 2iζ
η̃B η̃

(
(x−)

2−(x+)
2
)
(x−x++xB(x+−x−))

x−(x+)2(xB +x+)
,

G = −R0(p)
η

η̃B

xB(x−+x+)
x+(xB +x+)

, H = R0(p)
η

η̃

(x+)
2−xBx−

x+(xB +x+)
,

K = R0(p)
ηB

η̃B

(x−)
2
+xBx+

(x+)2+xBx+ , L = R0(p)
ηB

η̃

(x−−x+)(x−+x+)
x+(xB +x+)

have not yet specified the parameters η, and for the moment we allow them to change in an
unspecified way η → η̃ under scattering.

2.2. Coordinate Bethe ansatz

We can now turn to solving the scattering problem by Bethe ansatz methods. As usual
when treating integrable systems with boundaries, the strategy is to begin by considering the
scattering problem on the half-line with one boundary. One uses a Bethe ansatz to construct (the
asymptotic components of) energy eigenstates for this semi-infinite system, parameterized by a
collection of continuous parameters (the particle rapidities). Then the next step is to introduce
the other boundary, which will place extra consistency conditions (the Bethe equations) on the
rapidities—thereby quantizing the spectrum, as one expects for a system in finite volume.

Following the work of Sklyanin [34], systems with boundaries are very commonly treated
by means of the algebraic Bethe ansatz [35]. This was the approach taken in [22] for Y = 0
giant graviton boundary conditions. But it is certainly also possible to use a coordinate Bethe
ansatz in systems with boundary: see [30, 33] and for a system (the Hubbard model) which
requires nesting [36]. We adopt the coordinate approach here because, although it is perhaps
less mathematically deep, its physical interpretation is slightly more transparent and our goal
is to obtain the Bethe equations with the minimum of effort. We shall follow rather closely
the notation used in [7] in solving the closed case.

Let us, then, consider the scattering problem on the half-line with, say, a right boundary.
Consider states with K I elementary bulk particles. An asymptotic component∣∣χ a

1

〉 ⊗ · · · ⊗ ∣∣χy
K I

〉 ⊗ ∣∣χ z
R

〉 ∈ (p1,ζ1,η1) ⊗ · · · ⊗ (pKI ,ζKI ,ηKI ) ⊗ (ζR,ηR) (19)

of such a state can be abbreviated as∣∣χ a
1 · · · χy

K Iχ
z
R

〉I
. (20)

Any such asymptotic component extends, in a unique way, to an energy eigenstate: the
components in the remaining asymptotic regimes are obtained by acting with all possible
products of

S I
12,S I

23, . . . ,S I
K I−1,K I and RI. (21)

6
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(Here we have introduced the superscript I to distinguish these as the level I states and scattering
operators.) In general, however, the internal indices a, b, . . . of the particles will change in a
complicated way under these scattering operations. The nested coordinate Bethe ansatz [37]
consists in choosing a special subspace of states |�〉 on which, by contrast, S I

i, i+1 and RI act
merely by changing the representation labels (as discussed above) and multiplying by fixed
scalar factors S

I,I
i, i+1 and RI. On such states |�〉 the theory is, loosely speaking, as close as

possible to one with diagonal scattering. Precisely, we demand

Si,i+1|�〉 = |�〉σi,i+1
S

I,I
i,i+1, R|�〉 = |�〉τRI, (22)

where

σ12, σ23, . . . , σK I−1,K I , τ (23)

are the operators which change the representation labels (thus mapping to a ket in a
neighbouring asymptotic region) but which leave unaltered the internal indices a, b, . . . of
the basis states (20). They obey the defining relations

σi,i+1σi+1,i+2σi,i+1 = σi+1,i+2σi,i+1σi+1,i+2, σ 2
i,i+1 = id

τ 2 = id, τσK I−1,K IτσK I−1,K I = σK I−1,K IτσK I−1,K Iτ.
(24)

of the BCK I group. The Si, i+1 and R also realize these relations, which is really the precise
statement of integrability here: it is what guarantees that the extension from one asymptotic
region to all the others can be consistently completed by adding only a finite number of terms to
the state vector. Note that, here Si, i+1 is the scattering of the ith and (i + 1)st particles labelled
as they are ordered in space, and consequently it is the braided version of the Yang–Baxter
equation, which is the first of the relations in (24), that the Si, i+1 obey.

2.2.1. Level II. We first define the level II vacuum to be the state

|0〉II := ∣∣ψ3
1 ψ3

2 · · ·ψ3
K Iψ

3
R

〉
. (25)

This is an su(2) ⊕ su(2) highest weight state, so indeed S I
i,i+1 and RI can only act diagonally.

From tables 1 and 2 one sees that

S
I,I
i,i+1 = −1, RI = 1. (26)

2.2.2. Single particles: bulk. The next step is to define additional states—interpreted as level
II excitations above this level II vacuum—with the property that they transform under S I

i,i+1

and RI in exactly the same fashion as |0〉II. Consider first single excitations, and temporarily
forget about the boundary. The situation is then just as in [7]: one makes a spin-wave ansatz

|φa(y)〉II
lefttail :=

K I∑
k=1

∣∣ψ3
1 ψ3

2 · · ·φa
k · · · ψ3

K I

〉 k−1∏
�=1

SII,I(y; x�)f
L(y; xk, ηk). (27)

Here it is necessary to include the ‘tail’ running to the left of the particle because the background
is inhomogeneous. The level I parameters (i.e. the representation labels x±

i , ζi and ηi) have
the status of inhomogeneities at the sites of the level II spin chain, and a priori f L and SII,I

can depend on all of them, though in fact they need only to depend on the arguments shown.
It suffices to consider a chain of length K I = 2. The compatibility condition is then

S I
12|φa(y)〉II = |φa(y)〉II

σ12
SI,I = −|φa(y)〉II

σ12
. (28)

7
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One finds a solution4

f L(y; x, η) = 1

η

x+ − x−

y − x− , SII,I(y; x) = − y − x+

y − x− . (32)

It is useful to define, in addition,

SI,II(x; y) = 1/SII,I(y; x) = −y − x−

y − x+
(33)

f R(x, η; y) = SI,II(x; y)f L(y; x, η) = 1

η

x− − x+

y − x+
(34)

and verify that the compatibility condition (28) is also solved by the spin wave with its tail
trailing away to the right:

|φa(y)〉II
righttail :=

K I∑
k=1

∣∣ψ3
1 ψ3

2 · · ·φa
k · · · ψ3

K I

〉 K I∏
�=k+1

SI,II(x�; y)f R(xk, ηk; y). (35)

2.2.3. Single particles: boundary. Let us now re-introduce the boundary. One certainly
expects that a Bethe state with a single level II excitation should be a linear combination of an
ingoing (right-moving) spin wave, an outgoing (left-moving) spin wave and a term in which
the excitation has just reached the boundary. The subtlety is in arranging the tails consistently,
but the correct answer is easy to guess pictorially:

∣∣ΨII
(y,a)

〉
= · · · + + + + · · ·

=
K I∑
k=1

∣∣ψ3
1 ψ3

2 · · ·φa
k · · ·ψ3

K Iψ
3
R

〉 k−1∏
�=1

SII,I(y; x�)f
L(y; xk, ηk)

+
∣∣ψ3

1 ψ3
2 · · · · · · ψ3

K Iφ
a
R

〉 K I∏
�=1

SII,I(y; x�)f
τ (y; xB, ηB)

4 Readers familiar with the literature [38–41] will note that here SII,I does not include
√

x+/x− factors, and may
object that we should be using the ‘string basis’ for the η and η̃ parameters in order to produce them. So we should
stress that this solution, though not unique, is valid for any choice of η’s (constrained only by the requirement that
Si, i+1 and R realize (24)). This is so because, possibly unusually, we chose to treat the ηi as level I parameters on
the same footing as the x±

i . Both f L and SII,I can thus depend explicitly on η, just as on x±, and this is reflected
in the form of the compatibility condition (28). With the shorthand Fi = ηif

L(y; xi , ηi ), F̃i = η̃if
L(y; xi , η̃i ),

Si = SII,I(y; xi , ηi ) and S̃i = SII,I(y; xi , η̃i ), one finds that (28) unpacks to give

(x−
2 − x+

2 )F1 + (x−
1 − x−

2 )F2S1 = −(x+
1 − x−

2 )F̃2 (29)

(x+
1 − x+

2 )F1 + (x−
1 − x+

1 )F2S1 = −(x+
1 − x−

2 )F̃1S̃2 (30)

and hence

F1 + F̃1S̃2 = F̃2 + F2S1. (31)

The equation above is separable if F̃1 = a2F1 and F2 = a1F̃2 for some function ai = a(xi , fi , ηi ). We are quite free
to take the simplest possibility, namely a ≡ 1, yielding the solution shown in the text. Thus, for us,

√
x+/x− factors

do not originate in the choice of η’s, and we shall introduce them by different reasoning in section 2.3 below.

8
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+
K I∑
k=1

∣∣ψ3
1 ψ3

2 · · · φa
k · · · ψ3

K Iψ
3
R

〉 K I∏
�=1

SII,I(y; x�)R
II(y; xB)

×
K I∏

�=k+1

SI,II(x�;−y)f R(xk, ηk;−y) (36)

for new unknown functions f τ and RII. By construction, this automatically satisfies the
compatibility condition everywhere in the bulk. The new compatibility condition is

RI
∣∣�II

(y,a)

〉 = ∣∣�II
(y,a)

〉
τ
RI = ∣∣�II

(y,a)

〉
τ
. (37)

To solve it, it suffices to consider a level I state with only K I = 1 bulk excitation, in which
case ∣∣�II

(y,a)

〉 = B
∣∣ψ3φa

R

〉
+ D

∣∣φaψ3
R

〉
, (38)

where we have introduced the shorthands

B = + = f L(y; x, η) + SII,I(y; x)RII(y; xB)f R(x, η;−y), (39)

D = = SII,I(y; x)f B(y; xB, ηB). (40)

The compatibility condition is then

KR(x)D + GR(x)B = DR(x)(D)τ , (41)

LR(x)D + HR(x)B = DR(x)(B)τ , (42)

which admits the solution

f τ (y; xB) = 1

ηB

2xB

y + xB

, RII(y; xB) = −y − xB

y + xB

, . (43)

The fact that these indeed depend solely on the level II rapidity y and the boundary level I
parameters confirms that the ansatz was suitable.

2.2.4. Two particles: bulk. We now turn to states with K II > 1 level II excitations. Let us
once more temporarily ignore the boundary. An asymptotic component of a level II state of
two particles, with both tails running to the left, is

|φa(y1)φ
b(y2)〉II

tailsleft =
K I∑

k,m=1
k<m

∣∣ψ3
1 · · · φa

k · · · φb
m · · · ψ3

K I

〉 k−1∏
�=1

SII,I(y1; x�)f
L(y1; xk, ηk)

×
m−1∏
n=1

SII,I(y2; xn)f
L(y2; xn, ηn). (44)

The complete level II eigenstate of K II = 2 particles in the absence of boundaries is (as in [7],
except that we are working in the ‘non-local’ picture without markers Z±, cf [27])∣∣�II

(y1,a;y2,b)

〉 = |φa(y1)φ
b(y2)〉II

+ M(y1, y2)|φa(y2)φ
b(y1)〉′II + N(y1, y2)|φb(y2)φ

a(y1)〉′II

+ εab|ψ4(y1, y2)〉II
. (45)

9
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Here the second line is the most general su(2)-covariant level II scattering matrix5. It is also
necessary to include a component in which the particles are at the same site, combining to
form the composite excitation ψ4:

|ψ4(y1, y2)〉II =
K I∑
k=1

∣∣ψ3
1 · · ·ψ4

k · · ·ψ3
K I

〉 k−1∏
�=1

SII,I(y1; x�)f
L(y1; xk, ηk)

×
k−1∏
�=1

SII,I(y2; x�)f
L(y2; xk, ηk)f

σ (y1, y1; xk, ηk, ζk). (46)

The unknown functions are M,N and f σ . Let us recall how they are computed, since it is
a useful warm-up for the boundary calculation below. Consider a level I state of K I = 2
particles. The overlap of

∣∣�II
(y1,a; y2,b)

〉
with 1

2

(∣∣φa
1 φb

2

〉I ± ∣∣φb
1φa

2

〉I)
is

A
± :=

1 2

+

1 2

= f L(y1; x1, η1)S
II,I(y2; x1)f

L(y2; x2, η2)

+ f L(y2; x1, η1)S
II,I(y1; x1)f

L(y1; x2, η2)(M(y1, y2) ± N(y1, y2)) (47)

while its overlap with 1
2

(∣∣ψ3
1 ψ4

2

〉I ± ∣∣ψ4
1 ψ3

2

〉I)
is

F
± :=

1 2

+

1 2

= ±f L(y1; x1, η1)f
L(y2; x1, η1)f

f (y1, y2; x1, η1, ζ )

+ SII,I(y1; x1)f
L(y1; x2, η2)S

II,I(y2; x1)f
L(y2; x2, η2)

× f σ (y1, y2; x2, η2, ζ eip1). (48)

In terms of these shorthands, A and F, and the coefficient functions A, . . . , L of the level I
scattering matrix in table 1, the consistency condition

S I
12

∣∣�II
(y1,a;y2,b)

〉 = ∣∣�II
(y1,a;y2,b)

〉
σ12

SI,I (49)

reads as follows, component by component:∣∣φ(a
1 φ

b)
2

〉I
σ12

: AA
+ = DA

+
σ12

(50)∣∣φ[a
1 φ

b]
2

〉I
σ12

: BA
− + FF

− = DA
−
σ12

(51)∣∣ψ [3
1 ψ

4]
2

〉I
σ12

: CA
− + EF

− = DF
−
σ12

(52)∣∣ψ(3
1 ψ

4)
2

〉I
σ12

: DF
+ = DF

+
σ12

. (53)

The first of these equations yields M(y1, y2) = −1 − N(y1, y2). By considering the second
or third, one notices that the phase ζ dependence of f σ must be ∼1/ζ . In the fourth
equation, recall how these phases transform: on the right-hand side of the equation it is

5 Just as at level I, in the presence of a boundary the regions at level II correspond to the Weyl chambers of the
reflection group BCKII , and components in different regions are related by scattering operators SII

i, i+1 and RII. To
avoid unnecessary formalism, we do not introduce these operators explicitly. But note that, strictly, (36) is already a
linear combination of components from two regions related by RII.

10
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f σ (y1, y2; x2, η̃2, ζ ) and f σ (y1, y2; x1, η̃1, ζ eip2) that appear. The equation is then separable,
with solutions

f σ (y1, y2; x, η, ζ ) = η2

ζ

(x+x− − y1y2)

x+(x+ − x−)
f̃ σ (y1, y2) (54)

for any function f̃ σ (y1, y2). Finally both remaining unknowns f̃ σ (y1, y2) and N(y1, y2) are
fixed by the second and third equations. At this step for the first time, it is necessary to make
use of the mass-shell condition in (9). The solution is

M(y1, y2) =
i
g

v1 − v2 − i
g

, N(y1, y2) = − v1 − v2

v1 − v2 − i
g

, (55)

f̃ σ (y1, y2) = −
i
y1

− i
y2

v1 − v2 − i
g

, where vi = yi +
1

yi

. (56)

The calculation above was for level II excitations whose tails both trailed to the left. But
the same result holds when (44) is replaced with an asymptotic piece in which either or both
tails run to the right, in the sense of (35). The calculation is essentially the same: we omit the
details but, for example, the pictures in the case with the tail of y1 trailing to the left and the
tail of y2 trailing to the right are

Aleft−right ∼
1 2

+

1 2

Fleft−right ∼
1 2

+

1 2

(57)

2.2.5. Two particles: boundary. We are ready to re-introduce the boundary, this time for
states of K II = 2 excitations. We have almost all the needed ingredients: we know how to
scatter two level II excitations in the bulk (45) and how to scatter a level II excitation from the
boundary (36). So, starting from a component (44) in the region in which the level II particles
are ordered 1, 2 and are both heading towards the boundary, we can certainly construct a state∣∣�II

(y1,a;y2,b)

〉
which solves the compatibility condition

(1) everywhere in the bulk, and
(2) at the boundary whenever only one level II excitation lies on or next to the boundary.

The one remaining case is when both level II excitations are on sites {K I, R}.
Correspondingly, there is one new term we can introduce in the state vector, namely the
term in which two level II particles coincide at the boundary:

1 2

= ∣∣ψ3
1 ψ3

2 . . . . . . ψ3
K Iψ

4
R

〉 K I∏
�=1

SII,I(y1; x�)f
B(y1; xB, ηB)

×
K I∏
�=1

SII,I(y2; x�)f
τ (y2; xB, ηB)f στ (y1, y2; xB, ηB, fB). (58)

To fix the final unknown function f στ it suffices to consider a state of K II = 2 level II particles
on a background level I chain with only K I = 1 bulk sites (plus the boundary site). The
compatibility condition we have to solve is

RI
∣∣�II

(y1,a;y2,b)

〉 = ∣∣�II
(y1,a;y2,b)

〉
τ
RI = ∣∣�II

(y1,a;y2,b)

〉
τ
. (59)

11
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Now the overlap of the full state vector
∣∣�II

(y1,a;y2,b)

〉
with 1

2

(∣∣φaφb
R

〉I ± ∣∣φbφa
R

〉I)
is

1 2

+

1 2

+

1 2

+

1 2

:= (60)

= f L(y1; x, η)SII,I(y2; x)f τ (y2; xB, ηB)

+ SII,I(y1; x)f τ (y1; xB, ηB)f L(y2; x, η) [M(y1, y2) ± N(y1, y2)]

+ SII,I(y1; x)f τ (y1; xB, ηB)SII,I(y2; x)RII(y2; xB)f R(x, η;−y2)

× [M(y1,−y2) ± N(y1,−y2)]

+ SII,I(y1, x)RII(y1; xB)f R(x, η;−y1)S
II,I(y2; x, η)f τ (y2; xB, ηB)

× [M(y1, y2)M(y2,−y1) ± N(y1, y2)M(y2,−y1)

±M(y1, y2)N(y2,−y1) + N(y1, y2)N(y2,−y1)] (61)

while its overlap with 1
2

(∣∣ψ3ψ4
R

〉I ± ∣∣ψ4ψ3
R

〉I)
is

1 2

±
1 2

±
1 2

±
1 2

±
1 2

(62)

= SII,I(y1; x)f τ (y1; xB, ηB)SII,I(y2; x)f τ (y2; xB, ηB)f στ (y1, y2; xB, ηB, ζ eip)

± f L(y1; x, η)f L(y2; x, η)f σ (y1, y2; x, η, ζ )

± SII,I(y1; x)RII(y1; xB)f R(x, η;−y1)f
L(y2; x, η)f σ (y2,−y1; x, η, ζ )

× [M(y1, y2) − N(y1, y2)]

± f L(y1; x, η)SII,I(y2; x)RII(y2; xB)f R(x, η;−y2)f
σ (y1,−y2; x, η, ζ )

± SII,I(y1; x)RII(y1; xB)f R(x, η;−y1)S
II,I(y2; x)RII(y2; xB)f R(x, η;−y2)

× f σ (−y2,−y1; x, η, ζ ) [M(y1,−y2) − N(y1,−y2)] . (63)

Here it is necessary to think rather carefully about which terms should be included. Let us
comment on this.

Recall the structure of a coordinate Bethe ansatz: there is always a component in the
state vector for each region, i.e. each Weyl chamber of the relevant reflection group, here BC2.
Neighbouring Weyl chambers meet at one of the mirrors, where a compatibility condition
must be met. In the present case it was necessary to include additional components (the f τ

and f σ terms, respectively) associated with boundaries between neighbouring regions, which
are subsets of the τ and σ12 mirrors themselves. Finally, the f στ term is associated with the
intersection of the σ12 mirror with the τ mirror.

With this structure in mind, it is possible systematically to list all the ways in which the
two particles can end up next to and on the boundary. One finds that only those processes

pictured in (60) are valid. For example, one might be tempted to include
1 2

and
1 2

. .

But in the first of these, y2 is initially the particle closest to the boundary, so y1 cannot in fact
reach the boundary and reflect until it has intersected the path of y2, and likewise in the second
diagram after the first scattering of y1 with y2.

Similarly it is possible to list all the ways in which both particles can end up at the site
next to boundary, and find the final four diagrams in (62). In doing so, one should consider

12
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also the process

1 2

= ±SII,I(y1; x)RII(y1; xB)f R(x, η;−y1)S
II,I(y2; x)RII(y2; xB)f R(x, η;−y2)

× f σ (−y1,−y2; x, η, ζ )[M(y1, y2)M(y2,−y1) − N(y1, y2)M(y2,−y1)

− M(y1, y2)N(y2,−y1) + N(y1, y2)N(y2,−y1)]. (64)

This is a valid sequence of scattering events. But observe that it produces the term in
the ansatz associated with the boundary between the following two regions: both particles
outgoing, ordered y1, y2; and both particles outgoing, ordered y2, y1. We have already included
a term associated with this boundary: it is the final term in (62), and indeed these terms turn
out to be equal, as they must be. So one should include one or the other but not both.

Having found the overlap functions A
±
R and F

±
R for the boundary, we can plug them into

the consistency condition, which is, once more component by component,∣∣φ(a
1 φ

b)
2

〉I
τ

: AA
+
R = D

(
A

+
R

)
τ

(65)∣∣φ[a
1 φ

b]
2

〉I
τ

: BA
−
R + FF

−
R = D

(
A

−
R

)
τ

(66)∣∣ψ [3
1 ψ

4]
2

〉I
τ

: CA
−
R + EF

−
R = D

(
F

−
R

)
τ

(67)∣∣ψ(3
1 ψ

4)
2

〉I
τ

: DF
+
R = D

(
F

+
R

)
τ
. (68)

The first of these does not include the new unknown f στ and is satisfied upon inserting the
level II scattering matrix in (56). On inspecting the second or third, one sees that f στ must go
like η2

B

/
ζ . One then looks for a solution to the fourth equation of this form and finds

f στ (y1, y2; xB, ηB, ζ ) = iη2
B

ζ

(
1
y1

− 1
y2

)(
1
y1

+ 1
y2

)(
1 − iy1y2

xB

)(
1 + iy1y2

xB

)(
v1 − v2 − i

g

)(
v1 + v2 − i

g

) . (69)

Given the mass shell conditions, we have verified that all four equations are then satisfied.
At this stage we have solved for all the functions that appear in the level II ansatz and

demonstrated that it works for states of K II = 2 particles. No new types of terms arise for
states of K II > 2 particles and, since the original problem is solvable in the sense discussed
after (24), one can be confident that the ansatz continues to work. This is, admittedly, not
quite manifest because there are superficially new types of compatibility conditions to check
when K II > 2. But these are not exclusive to our present boundary case: even in the bulk one
sees for the first time ψ4φa appearing as neighbouring spins in the level II chain.

2.2.6. Level III. Finally we come to level III of the nesting. The goal is much as it was
ingoing from level I to II: we know that a component

|φa(y1)φ
b(y2) · · · φz(yK II)〉II

(70)

of a level II state in any one region can be uniquely completed, by including the terms
for all other regions and the additional terms for boundaries of regions, to a Bethe state∣∣�II

(y1, a; y2, b; ...; yKII , z)

〉
obeying (22). But the su(2) indices a, b, . . . , z will in general be

transformed non-trivially by these level II scattering processes. We want to identify those
linear combinations of states (70) on which the level II scattering operators act diagonally.

13
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Let the level III vacuum be

|0〉III = |φ1(y1)φ
1(y2) · · · φ1(yK II)〉II

. (71)

For single particles in the bulk we again make a spin-wave ansatz,

|φ2(w)〉III =
K II∑
k=1

|φ1(y1) · · · φ2(yk) · · · φ1(yK II)〉II
k−1∏
�=1

SIII,II(w, y�)h
L(w, yk), (72)

and find that the bulk compatibility condition (cf (45) and (56)) is solved by

hL(w, y) =
i

2g

w − v − i
2g

, SIII,II(w, y) =
w − v + i

2g

w − v − i
2g

. (73)

Then, defining SII,III and hR just as at level II, cf (33)–(34), we can make an ansatz for a single
particle in the presence of a right boundary as in (36), except that there is no distinguished
boundary site for the level III chain and so no boundary term in the ansatz. Finally, after also
solving for SIII,III component of the diagonalized scattering matrix, one has

RIII(w) = −1, SIII,III(w1, w2) =
w1 − w2 − i

g

w1 − w2 + i
g

. (74)

2.3. Bethe equations

The nested coordinate Bethe ansatz above was for the semi-infinite system with a right
boundary. Let us now add the left boundary, so placing the system on a finite interval. Then
the Bethe equations are the quantization conditions obtained as follows: starting from any
given component of the state vector, consider picking up a particle (belonging to any level, I,
II or III, of the nesting), moving it through all the particles lying on its right, reflecting it from
the right boundary, moving it back again through all the particles, reflecting it from the left
boundary and finally moving it through all the particles that were originally on its left:

Since this sequence of operations returns all the particles to their initial positions and
(quasi)rapidities, we must recover the component of the state vector we began with—modulo,
in the case of the physical, i.e. level I particles, a phase factor ‘e2ipL’ that comes from translating
to the right a total distance L with momentum p and a distance L to the left with reflected
momentum −p. Here we add scare-quotes, because we need to be more precise about the
meaning of the system size L. Thus, the Bethe equations take the form

RA
R

(
xA

k

)
RA

L

(−xA
k

) III∏
B=I

KB∏
�=1

(A,k) =(B,�)

SA,B
(
xA

k , xB
�

)
SB,A

(
xB

� ,−xA
k

) =
{(

x+
k

x−
k

)−2L

for A = I

1 for A = II, III.

(75)

Here xA denotes the relevant rapidity variable for a particle at level A ∈ {I, II, III}, and −xA

the reflected rapidity: thus in particular xI = x±, −xI = −x∓. We can use parity symmetry to
write RA

L(−xA) = RA
R(xA) and SB,A

(
xB

� ,−xA
k

) = SA,B
(
xA

k ,−xB
�

)
in the equations. Explicitly

then, the Bethe equations for the su(2|2) scattering theory with ‘Z = 0’ boundaries are

14
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1 = R0R
(
x±

k

)2
(

x+
k

x−
k

)2L K I∏
� =k

S0
(
x±

k , x±
�

)
S0

(
x±

k ,−x∓
�

) K II∏
�=1

y� − x−
k

y� − x+
k

y� + x−
k

y� + x+
k

(76)

1 =
(

yk − xB

yk + xB

)2 K I∏
�=1

yk − x+
�

yk − x−
�

yk + x−
�

yk + x+
�

K III∏
�=1

w� − vk − i
2g

w� − vk + i
2g

w� + vk + i
2g

w� + vk − i
2g

(77)

1 =
K II∏
�=1

wk − v� + i
2g

wk − v� − i
2g

wk + v� − i
2g

wk + v� + i
2g

K III∏
� =k

wk − w� − i
g

wk − w� + i
g

wk + w� − i
g

wk + w� + i
g

. (78)

To be more precise about the meaning of L, we can consider the equations in the weak
coupling limit, where they should be those of an open spin chain. It suffices to consider the
case of a single level I excitation. We have to specify how our definition of the reflection factor
relates the ingoing and outgoing spin waves. We do that explicitly in the appendix.

In the conventions we are following, the R0 appearing in the Bethe equations would be the
overall scalar factor of Hofman and Maldacena [13] times the corresponding dressing factors
to satisfy the boundary crossing symmetry condition [16, 17],

R2
0L = − (x−)2(xB − x−)(xB + x−)

(
xB + 1

x+

)(
xB + 1

x−
)

(x+)2(xB − x+)(xB + x+)
(
xB − 1

x−
)(

xB − 1
x+

)σ(x,−x)σ 2(x,±xB). (79)

Let us take for instance (76) for K I = 1 and K II
(α) = 0. This should reproduce the Bethe

equation for single particle in the sl(2) sector which reads (A.11)

R4
0L(x) =

(
x+

x−

)2(K0−1)

, (80)

where K0 is the number of sites in the underlying spin chain (including the boundary sites).
This implies that we have to take L = K0 − 1 in (76).

At this point we should recall that, for the operators we are considering, the symmetry is
actually su(2|2)2 and that the excitations are in bifundamental representations. This simply
means there are two kinds of level II and level III particles, indexed by α = 1, 2. So the full
Bethe equations read

1 = R0R
(
x±

k

)4
(

x+
k

x−
k

)2(K0−1) K I∏
� =k

S0
(
x±

k , x±
�

)2
S0

(
x±

k ,−x∓
�

)2

×
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α=1

K II
(α)∏

�=1

y
(α)
� − x−

k

y
(α)
� − x+

k

y
(α)
� + x−

k

y
(α)
� + x+

k

(81)
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y
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y
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)2 K I∏
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�

y
(α)
k + x−

�

y
(α)
k + x+

�
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�=1

w
(α)
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(α)
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2g
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(α)
� − v

(α)
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2g

w
(α)
� + v

(α)
k + i

2g

w
(α)
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(α)
k − i
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(82)

1 =
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w
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(α)
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(α)
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(α)
� − i

2g
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(α)
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� + i
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� =k

w
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g

w
(α)
k + w

(α)
� − i

g

w
(α)
k + w

(α)
� + i

g

. (83)

But K0 is not a good quantum number because, beyond one-loop, the length of the
chain can vary under mixing [42]. We would therefore like to eliminate it, in favour of the
R-charge J = J56 (which, being the Noether charge of a symmetry of the quantum theory,
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is certainly a good quantum number). More precisely, we will eliminate k0 in favour of
J ≡ Jstring = Jtotal − N + 1, where Jtotal is the total R-charge J56 in the operators (3) that we
are considering.

We can translate states χ a,ȧ into fields of the N = 4 action and specify how much they
contribute to J and KA:

J K0 K I K II
(1) K II

(2)

χ1,1̇ ∼ � 0 1 1 1 1
χ3,1̇ ∼ � 1

2 1 1 1 0
χ1,3̇ ∼ �̄ 1

2 1 1 0 1
χ3,3̇ ∼ DμZ 1 1 1 0 0
Z 1 1 0 0 0

(84)

In each case J = K0 − 1
2K II

(1) − 1
2K II

(2). Thus, the total contribution to J is

J = K0 − 1
2K II

(1) − 1
2K II

(2) (85)

and the Bethe equations can be rewritten as

1 = R0
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(86)
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(87)

1 =
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g

w
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g

. (88)

2.3.1. Vacuum 1. Had we chosen 1 as the vacuum orientation throughout rather than 3,
we would have J = K0 − K I − 2 + 1

2K II
(1) + 1

2K II
(2) and would have obtained, by arguments

paralleling those above, the Bethe equations in the following form:

1 = R0
(
x±

k
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(89)
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. (91)

Equations (86)–(88) should be, of course, equivalent to equations (89)–(91). Consider for
instance an sl(2) state with a single bulk impurity, which has K I = 1, K II

(1) = K II
(2) = 3 and

K III
(α) = 0. The corresponding auxiliary rapidities y

(α)
k solving equation (90)6 can be taken

such that when plugged back in (89), equation (86) for K I = 1 and K II
(1) = K II

(2) = K III
(α) = 0

is recovered.
We expect the Bethe equations we presented here to be valid also for arbitrary Q-bound

state magnons, just by using the spectral parameters satisfying the Q-bound state mass-shell
condition. This could be shown in general by reformulating the coordinate Bethe ansatz
in terms of coproducts of Yangian symmetry generators [43]. For the particular case of
fundamental boundary magnons and generic Q-bound state magnons, these Bethe equations
could be obtained from a coordinate Bethe ansatz using the explicit 1-Q boundary reflection
matrix obtained in [44], much as we did here for fundamental bulk magnons.

3. Z = 0 D7-brane

Another system enjoying integrable open boundary conditions is the spectral problem in
the planar limit of an N = 2 super Yang–Mills theory, consisting of the N = 4 theory
supplemented with a chiral hypermultiplet of fundamental matter [24].

Given a chain of N = 4 fields, one can either take a trace to make a gauge invariant
operator or use the fundamental matter to contract the SU(N) indices. In the planar limit,
the first possibility would lead to the same spectral problem as that of N = 4 with periodic
boundary conditions. The second possibility amounts for imposing open boundary conditions
to the chain of fields. In the dual gravity description this corresponds to an open string attached
to a probe D7-brane in AdS5 × S5, whose worldvolume wraps the entire AdS5 and a maximal
S3 ⊂ S5.

In certain sectors, this open problem was shown to be integrable at its weak [25] and
strong coupling [15] limits. Moreover, we have proposed in a previous paper [26] a reflection
matrix interpolating between both limits, consistent with the symmetries of the problem and
satisfying the boundary Yang–Baxter equation.

As for the giant graviton cases, the relative orientation between the vacuum field Z and
the 3-sphere matters. If the maximal 3-sphere was defined by the intersection of Y = 0
with |X|2 + |Y |2 + |Z|2 = 1, only a psu(2|1) × psu(2|1) ⊂ psu(2|2) × psu(2|2) would be
preserved [26]. This is essentially the same problem as the Y = 0 giant graviton. Therefore,
the corresponding Bethe ansatz would be the one formulated in [22, 23].

When the maximal 3-sphere is defined through Z = 0, we have for the reference state of
the Bethe ansatz the following operator:

χ ȧ
LZJ χ ė

R. (92)

6 For a single bulk impurity equation (90) is solved by y → 0,∞,

√
xB (xB (x−−x+)+2x+x−)

x+−x−+2xB
.
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The boundary matter fields transform in a representation (1, ) of psu(2|2) × psu(2|2) and
only a su(2) × su(2) × psu(2|2) symmetry is preserved by the reflection of bulk excitations.

Concerning excitations carrying fundamental dotted psu(2|2) indices, their boundary
reflection

RR : (p,ζ,η) ⊗ (ζ eip,ηB) −→ (−p,ζ,η̃) ⊗ (ζ e−ip,η̃B ) (93)

would be exactly the same as that is reproduced in table 2. Therefore, the spin-wave functions
for excitations of higher levels of nesting would also be the same as those described in the
section 2.2.

However, the problem becomes different when it comes to the undotted psu(2|2)

fundamental excitations, because they are reflected by a singlet boundary

RR : (p,ζ,η) ⊗ 1 −→ (−p,ζ,η̃) ⊗ 1. (94)

In [26], we have shown that the most general form of this reflection consistent with
integrability is of the form

R|φa(x)〉 = R0(x)
η

η̃

xB − x−

xB + x+
|φa(−x)〉, (95)

R|ψα(x)〉 = R0(x)|ψα(−x)〉. (96)

As before, a coordinate Bethe ansatz can be formulated for this case. When we introduce
a boundary, the spin wave for a single level II excitation would be slightly simpler this time,
because the excitation cannot be allocated at the boundary site. The Bethe state will be the
following combination of ingoing and outgoing spin waves:

· · · + + + · · ·

=
K I∑
k=1

∣∣ψ3
1 ψ3

2 · · · φa
k · · · ψ3

K I

〉 k−1∏
�=1

SII,I(y; x�)f
L(y; xk)

+
K I∑
k=1

∣∣ψ3
1 ψ3

2 · · · φa
k · · · ψ3

K Iψ
3
R

〉 K I∏
�=1

SII,I(y; x�)R
II(y; xB)

×
K I∏

�=k+1

SI,II(x�;−y)f R(xk;−y), (97)

with only one unknown function RII(y; xB).
The bulk compatibility condition is again satisfied by construction. For the boundary

compatibility condition, it suffices to consider a state with only K I = 1. The compatibility
condition requires then

xB − x−

xB + x+
= f L(y;−x) + SII,I(y;−x)RII(y)f R(−x;−y)

f L(y; x) + SII,I(y; x)RII(y)f R(x;−y)
, (98)

which admits the solution

RII(y; xB) = y − xB

y + xB

. (99)

The compatibility conditions for states with K II � 2 excitations are going to be just those
of the bulk, because the boundary is a singlet and therefore level II excitations can not be
allocated there.
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When moving to the next level of nesting one has got, of course, the same components
SII,III and SIII,III for the diagonalized bulk scattering matrix. For the reflection of a level III
impurity we find again RIII(w) = −1.

To conclude this section let us write down the resulting Bethe equations after the
introduction of two boundaries. The first thing to note is that the RII(y; xB) is the same
(up to a sign) as in the case with the fundamental excitations in the boundary. One should
also note that level II excitations of the right psu(2|2) move in a chain (of level I excitations)
two sites longer than the level II excitations of the left psu(2|2). This is so because the
boundary degrees of freedom have dotted (right) psu(2|2) indices only. Nonetheless, this has
no relevance for the Bethe equation because level II excitations do not pick up any phase when
moved around the chain.

Therefore the Bethe equations are in this case also of the form
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, (102)

where now R0 must be the corresponding D7-brane dressing phase7.

4. Discussion

In this paper we have used a nested coordinate Bethe ansatz to obtain the Bethe equations for
excitations on free strings on AdS5 × S5 with certain open-boundary conditions. In particular
we considered strings whose large angular momentum is in the same plane as the angular
momentum of the maximal D3-brane (giant graviton) to which it is attached. In section 3 we
derived the Bethe equations for the closely related case of an open string ending on a D7-brane.
As usual, these equations are asymptotic in the sense that they characterize the spectrum of
strings in the limit of very large angular momentum J. An obviously interesting step forward
would be the formulation of a boundary thermodynamic Bethe ansatz for these cases, which
should encode the spectrum of strings with finite angular momentum.

Studying finite-size effects for planar AdS/CFT with open boundaries has some appealing
features in comparison with the case of periodic boundary conditions. In the first place, at weak
coupling, the analogues of wrapping effects can show up as early as at 1-loop order. Therefore,
explicit verifications of finite-size corrections to the asymptotic Bethe ansatz spectrum can

7 One should be able to obtain it imposing crossing symmetry as in the giant graviton cases [16, 17].
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be made without daunting higher loop computations. Secondly, for short operators one can
swap the roles between background fields and impurities, thus obtaining inequivalent Bethe
ansatz descriptions. Interestingly, their failures due to finite-size corrections occur at different
orders, and this interplay between alternative points of view allows one to test certain finite-size
corrections without an explicit perturbative gauge field theory computation. In other words,
some aspects of finite-size effects should be easier to derive in cases with open boundaries and,
for instance, explicit checks beyond the leading Lüscher approximation should be possible.
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Appendix. 1-loop Bethe equations

The 1-loop Hamiltonian in the su(2) sector (for states with chiral fields Y and Z only) is

Hsu(2) = 2g2
L−1∑
l=1

(1 − Pl,l+1) + 2g2qZ
1 + 2g2qZ

L , (A.1)

where qZ
l is 1 or 0 whether the lth site is occupied by a Z or not. These L sites do not include

the boundary sites. So, there are a 0th and a (L + 1)st site, both occupied by a Y.
Let us consider a single bulk Y impurity in a background of Z fields

|ψ〉 =
L∑

n=1

(
eipn + R

su(2)
L (p) e−ipn

)|n〉, |n〉 ≡ |YL;Zn−1YZL−n;YR〉. (A.2)

This superposition of left-moving and right-moving spinons is an eigenstate with eigenvalue
8g2 sin2

(
p

2

)
+ 4g2, provided the following two conditions are met

R
su(2)
L (p) = − 1 − 2 eip

1 − 2 e−ip
, e2ip(L+1) = (

R
su(2)
L (p)

)2
. (A.3)

Let us consider now states in the sl(2) sector

|a0, a1, . . . , aL+1〉 ≡ ε
i1,···,iN
j1,···,jN

Z
j1
i1

· · · ZjN−1
iN−1

(Da1ZDa2Z · · ·DaLZ)
jN

iN
. (A.4)

In the boundary sites, a0 and aL+1 must be different from zero. The 1-loop Hamiltonian is that
of [45] setting what is defined there as α to zero (for maximal giant graviton boundaries). The
Hamiltonian is conveniently split into bulk and boundary terms

Hsl(2) = 2g2H0 + 2g2
L∑

l=0

Hl,l+1 + 2g2HL+1, (A.5)

with

Hl,l+1|al, al+1〉 =
al∑

k=1

1

k
(|al, al+1〉 − |al − k, al+1 + k〉) +

al+1∑
k=1

1

k
(|al, al+1〉 − |al + k, al+1 − k〉)

H0|a0, . . .〉 =
a0−1∑
k=1

1

k
|a0, . . .〉, HL+1| . . . , aL+1〉 =

aL+1−1∑
k=1

1

k
| . . . , aL+1〉.
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Note that whenever |0, a1, . . .〉 or | . . . , aL, 0〉 is retrieved, those states must be taken as
identically zero. We now consider a single D bulk impurity

|ψ〉 =
L+1∑
n=0

(
eipn + R

sl(2)
L (p) e−ipn

)|n〉, (A.6)

with n in |n〉 indicating the position of the bulk impurity. For example |0〉 = |2, 0, . . . , 0, 1〉,
|1〉 = |1, 1, . . . , 0, 1〉, . . . , |L+ 1〉 = |1, 0, . . . , 0, 2〉. For |ψ〉 to be eigenstate with eigenvalue
8g2 sin2

(
p

2

)
+ 4g2, the following two conditions are required:

R
sl(2)
L (p) = −1 − 2 e−ip

1 − 2 eip
, e2ip(L+1) = (

R
sl(2)
L (p)

)2
. (A.7)

Both R
su(2)
L and R

sl(2)
L are consistent with the weak coupling limits of the all-loop reflection

factors obtained by Hofman and Maldacena [13]:

R
su(2)
L = R2

0LA2
L ∼ − 1 − 2 eip

1 − 2 e−ip
+ O(g2), (A.8)

R
sl(2)
L = R2

0L ∼ −1 − 2 e−ip

1 − 2 eip
+ O(g2). (A.9)

Defining K0 = L + 2 as the total number of sites in the open chain, the Bethe equations read

for a single bulk particle in the su(2) sector:

(
x+

x−

)2(K0−1)

= R4
0LA4

L, (A.10)

for a single bulk particle in the sl(2) sector:

(
x+

x−

)2(K0−1)

= R4
0L. (A.11)
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